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ABSTRACT
The exact relativistic fields inside a perféctly

conducting, closed, grounded cylindrical box of finite

- length, which are due to a charged particle moving down

the axis in vacuum are obtained. ‘This permits construc-
tion of the solution for a line segment propagating down

the axis, and the return surface-current, The fields

are shown to be causal so that no field is present before

the light front. The technique of solution émploys
superposition of Lorentz transformed fields of the posi-
tivg and negative images. The initial condition_that
there be no field in the box at time t = 0 is satisfied
by adding a superposition of the cavity modes to the ~

inhomogeneous solution., The fields and energy in the

wake are also found.

e
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Coulomb field in the frame of the particle to the 'lab'

| frame.5 When boundaries are present such a tecﬂhique is
Stlll possible if the static problem is soluble using the

_method of images. This idea was suggested by Ot% and -~

Shmé)ys6 in an,investigation of a particle impinging on &
dielectric half spéace. . e

The static solution for a particle in a cylindriéal box
is éolved with an inﬁinite array of positive and nega%ive
images;7 (owing to the infinite number of reflections in
the two eﬁd plates). This, together with one other obser-
vaﬁion, permits solution in terms of Lorentz transformations

of the positive and negative fields. This second observatiocon

e
)]

that when the positive source charge (in the box) moyes

to the right, all of the positive images rigidly move with

it while all the negatlve images rlgldly move in the opposite
dlqectlon. First we calculate the static field of the _pos-
itfve charges and then Lorent:z transform,this field to the
1a5'(box) frame. Then we calculate.the statié field of the
negatlve charges (these are all 1mage charges) and Lorpntz
transform it to the lab frame. Addition of these two sets

of flelds gives the inhomogeneocus part of the solutlon to the
problem. It contalns the singularity at the partlcle pOSltlon

z =vt, r = ‘o and satisfies the boundary condition that the
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_noE satisfy the initial condition that the fieids are'ﬁéfo"

-5~

tangential component of E vanishes at the wails. It does

.in'the whole box at t = 0 (At t = 0, £he'positive'and negative

im&ges cross. This current generates a magﬁetic field.) To
inéert this piece of data wé'construct a homogeneous solution”
whfch cancels the inhomogeneous solution at t = 0. The
homogeneous solution is a superposition of the TM modes of

the cavity. (The inhomogeneous solution is a TM'Wavé).

The addition of the homogenecous solution also gdarantees
that the.wholé solution is causal so that ail fields wvanish
fof z > ct. rFurthermore for times ct < L (the box ié of
length L) the fields are those of a semi infinitely long
(0 £ z) cylinder. This must be the case sihée the fields are
no# influencngby the far wall bgfore t = L/c.‘

The cﬂigf?assumption in théfénalysisfis that the particle
moﬁes in frée flight. This assumptioh is used in thé analysis
tb;obviate a singularity in the energy of the wake fields.

Fo% an ultra-relativistic electron it is found that gree
flight is maiﬁtained prévided the electron leaves-the cavity

13 cm (1 fermiia

thiough a hole of diameter greater than 10~
Anélzsis

3a. The Inhomogeneous Component

The static potential due to a point charge g on' the uxis

at?z‘; ﬁiq.an infinitely long grounded cylinder,




with perfectly reflecting walls is,

'k'|z|J (k.r)
-1 k. [J (ke )]2

The radius of the tube is r,. - The zeroth and first Qfaer

Bessel functions are Jo and J, respectively. The above

1

expression contains the proper singularity at z=o, thfough

the 6-functionh representation

J (k.r)
6<r>=%§; ;o :
- 3 xR [Py e ]
whére |

r
=

J §(r) 2mrrdr = 1 and Jo(kjro) =0
o

It follows that

_ a9, _ 3¢
2rgd(r) = [SEL 5;1]
- z=0

where 2 denotes z 2 0 respectively.

For a closed cylindrical box with end plates at z = 0 and

z.; L an@#a test charge q at z = z_, an infinite array of i
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chatges are induced exterior to the box along the axis.
Their relative positions are depicted in Fig. 1. The™

static solution to this problem is obtained by replacing

: the'exponential z-dependent part of the solution in (1)

with the corresponding potential due to all the images.
Thére are positive-images at z = 2nL + 2z, and negative
images at z_ = 2nL - 2z where n is an integer running
from -« to +=,

For the relatifistic problem we must separate_the
fiéld into that due to the ?ositive images'(plus source}
and that due to the negative images. The z-dependent part

of ‘the solution due to the positive charges appears as,

o (4 o T Ryl - zg +2) 2 Tky(2nk 4+ oz, - z)
4 n=1 =1
h k, @'- -z ]
+ e—kjiz - Zo = cos ] ‘z Ol :

ginh k.L
3

Similarly the z-dependent part of the solution due to the

negative charges appears as,

b ) cosh %j B; - |z + zol]
J sinh kjL
Y

Superposition of the total solutions generated by w(f and

_w(r) (as given by these latter two expressions) repfqduces

thé static solution7



If the test charge is moving on the axis inside the
boi, all of the positive images move with it. Let tﬂe
fr%me where these charges are at rest be 0. At t = d the
soﬁrce charge is at the origin of 0; and, furthermoré, at
this time the 0' frame and the lab frame 0 are coincident.

The potential'due'to all ﬁhe positive chérges in 0

(where the source is always at the origin) is,

cosh kj (L' ~|z']) Jo(kjr)

2 2 sinh k_ L' k.J 2

¢,(+)l(rlzl) — 2q
r

In this latter formula and expressions follow, le is
written for Jiz(k.r Y.
jTo

The corresponding components of the electric field are

sinh k. (L' - ' J (k.r
z r 2 sinh k.L' k. J 2
' o j 3 !
h k. (L' = ! \
c (4), _2q zcos 'J(L z']) Jf(kjr)
r : 2 sinh k_.L' 2 -
r . .| _J1

Next we must write the RHS of the above expressions in terms
of the coordinates of the lab frame 0. The transformation
for the pos}%}ve chéin is z' = y(z - vt) and.z' = y(z + vt}
for the nééative chain (see Fig. 2). The'(proper) length
between.image charges in b' is L' while the length between

these same charges in 0 is L, so that.L' = yL. There results,
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sinh ij[? - |z - vti] I, tk.r)

(+), 2q 1 -
Tz Sy 2 b sinh Yk, L 5.2 sgn (z-vt)
o | J 3V¢
s (). _ 29 zcosh, Y}_:j [L - _Iz - _vt[] T, (kjr) (2)
' SR 3 2 sinh vk.L 7 2
| Yo | 3 'Y
vy=-89H"% 8= v/e

When observed in the lab frame, these fields become,f

S R e R

g () (+) _ gp (e
2 T N O - A BE (3)

b B r

In similar manner, we obtain for the fields of the

negative charges, expressed in the coordinates of 0,

sinh kaJm + vt] J {k,r
inh vk, |z oo ¢ 4 )

(=), . 29 B
"2 B r 2 ~ sinh vk.L 7.2 sgn (z-vt)
o 3 J L
[ ] (4)
. (-). _ 29 cosh ij - |z - vt 'Jl(kjr) _
r 7 2 sinh vk, L 3 2
s 3 3 g

Trénsforming these fields to the lab frame gives,

Superposing these fiei&é'éiﬁh those of the positive chain,

—,

:i) Eg. {3} gives the inhomogeneous component of the total
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solution,
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. z
h Q.t h K, (1~
sin jt cos 3( i)

sinh K,
J

X ) z
sinh ©.t sinh K. (1-5)
] J( L

ginh K,
B

Z
cosh .t cosh K, (1-+
3 J( L)

for z » vt,

)<

R
3

ﬂ

{The superscript "i" denotes inhomogeneous.)

sinh K,
]

"Behind" the particle for z < vt these fields become,

E_" = -

i 4qy

i 4

. (k
_ 4y
Bcp“‘rz}:
]

4q2 >‘ J (k r) sinh Kj § sinh (K; - th‘}
LA sinh K.
r, 3 i 3

Y Z y (k31 sinh K, Iz—Jsinh (g - 2t)
sinh X,
3 j
z ' §

r} cosh Kj i—cosh (Kj ﬂjt)

sinh Kj

o

This solution explicitly exhibits the periodicity of the

fields in the

"axtended lab fréme".

(See Fig.

3

At any

- (6a)

(6b)
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fixed position, the time periéd is 2L/v, while the length
period is 2L. At tp? instant when the images bovér one
anoiher (vi = nL)} the electric field vanishes while the
maghetic field‘is minimum midplane between images and
maximum in the image planes.

In Ea. (8) we have written,

e
ki

k.
Y JV

Ex{\
1

k.L
i P

Since gldoes not vanish at t = 0, it follows that the
solution constructed from images as outlined above, thle
satisfying boundary and singularity conditions does not
satisfy the initial data that £ =B =0 for t < 0 every-
where in the box. In so far as the solution so constructed
indorporates the presence of the source, it is a particular
solution {(viz. to the wave equations). The total solution to
our initial value problem is obtained by adding to tﬁis
particular integral a solution to the homogeneous wave
equations. This final form gives E = B = 0 at ¢t = 0, is
singular oh z = vt, E“ vanishes at the walls, and is causal.

It follows that it is the correct Green's solution to tha

stated problem.
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3bh.. The Homogeneous Component and Total Green's Funcﬁion.

In so far a? B, =0 in the inhomogeneous solutio; (6),
it represents a TM wave. It follows that a suéerposition
of TM waves must be added thereto to give the desired null
effects. These are TMij modes, J referring to wave ﬁﬁmber
kj and p to z-harnonic dependence. The zero relates to

Bessel function oxder. The eigen frequencies wjp which ac-

company these modes are
L ='c2 [ka + (pﬂ/L)Z]

Superposition of these modes give the fields,

. S""! .
. . - pPUE s
E;ﬂzng ij JD{Ljr} cos (~iw0 exp 1mpjt)

i it
h\“’j
d
L.J-M
ij
i)

Pr_ ; p7z i
- "E—j'“ w Lk, Ji(kjr) sin { 1, ) exp ( 1ijt) ‘ {7)
3
V ij iw ; ‘
. = [ : :-_. | .;- pﬂz - :
. i% ip' gj, €3 ( égi}Ji(kjL) cos (wiw} exp ( 1ijt)

The coeffiﬁient-epj is to be determined. Both the real and
imaginary components of these fields, respectively, are so-
lutions to the homogeneous wave egquations. At t = 0

Im,ﬁ% = B¢h {h denotes homogeneous) appears as,
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ck

Bh=-2 ZEpj(ﬂ}J(kr)cos( plz,
. 3 )

Comparison with Eg. (6) indicates that e must be chosen so

that

- Z
4qyB cosh Kj(l—f) W

1 O

{
Q
o)
0

rg

N

To solve for Epj we employ the Fourier decomposition,.

cosh K(l-%) ® QOS
K sinh X

(ﬂp)2

=-—C0

To validate this representation we rewrite the summation as an

integral in the complex p-plane.

cosh (mpz/L) _ 1 J cos(ﬂpz/L) cot wp dp - I

2 2 2mi
pm-w (TP)° + K - Bﬁp) + K ]

The curve "C" encircles the real p-axis as shown in Fig. 4a.

Using the cos addition law we obtain,

- 1 I cos wp(l—%i dp [ sin (ﬂpZ/L) ap
I o= -
C}.Eﬁp)z + Kz]sin TP [ t K-J
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Since the second integrand is an analytic function along the
whole real axis, itgvfntegral vanishes. To evaluate the fifst
integral, we distort £he contour "C" into "C," and "Czﬁ as
shown in Fig. 4b. This gives the two residues from the poles
at mp = * iXK which add to yield the desired result.

For £_. we then have
p3 © ‘.

where -« < p < 4=,

Sgbstitﬁtihg this value for €53 into Eq. (7)., tékigg the
Im part thereof and.adding the resultant fieids to the in-
homdgeneous solution, Eg. (6), gives |

Jo(kjr) (51nh th cpsh Kj(l—f)
2 1 ‘ sinh Kj

(8a)

9
M8
ht
)

it
i

03

. M
Q

(ot

N

‘-f

<

)
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. . Z
- _ 4qy SE Ji(kjr) flnh th sinh Kj(l_f )
r 2 7.2 sinh K. | (8a)
‘o j=1 1 3 cont'd.
o . TPZ
) + e, sin mpjt zln _i_l
2
p=-0 ij [(Tl'p) + K:} ]j
Je(k.x)
= ﬂ% Z'—'E_'J“f—vj> (z,t,v,L}

o T, (k. . ¢ (1~
I 4qyB 2: i(_jr) cosh th cosh Rj( L)
sinh Kj

w ¥. cos w_ .t cos pz
- z: J 28] L
p=-

>
W, {(z,t,v,L)
o 3

The second identification in each case above serves ﬁo define
the (z,t) dependent forms, U, V, and W. These.are the fields
for z > vt.

For z < vt, merely substitute the inhomogenecus terms
in the above expressions with those given in Eq. (6b). The
homogeneous component of the total solution (for z ¥ L) is

then continucus across the plane z = vt while the inhomogeizous
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component includes the singularity at the particle position.

For z < vt there results,

. 7 )
£ = 4q §: Jo(kjr) sinh Kjf sinh (Kj . th)
z r 2 3 ) sinh K.

K. Q: sin w .t cos TPz
j 3 PJ L

P =5
J {k.r)
-3, 5 2 3 ¢
r 2 J ‘
o 3 1
. . z
J, (k.r sinh K.= sinh (K. - 2.t)
g =4 < L B5%) L ] j (8b)
r v 2 3 2 sinh K.
o | £ 3
ﬂpmj sin ijt sin E%E
-2 w_ . [(Wp)z + K.2
p PJ .:J;
J., (k.r)
= 449y 1 <
IR A
© i Tt
' 2 : ,
. h K,= h (K., - &.t
5 - 4qYB Ji(kjr) cos i cosh { 3 5 }
¢ . 2 El T 2 sinh K.
o j i 3
K. cos w_.t cos Pz
- E: J _ DJ L
{('rrp)2 + K.2]
o ]
Js (k.
_ dayé Jat %r) W
= . 3,
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Egs. (8) with g = 1 are the components of the relativ-
istic Green's tensor field GUv(ﬁ't) {(this noEation will be |
used below}, The components of G are the values of the fields
at x, t due to a point unit charge moving with v aloh§ the
axis of a cylindrical grounded box, which was at z = 0 at

t = Oﬂ

3c. Causality
To show that the components of G as given by Eg., (8)

are all causal the summation over p is converted to a con-
tour integration in the p-plane (after multiplying by ctn

Tp). The following addition formulas are used.

cos TP (l-%) = cos “iz cos 7wp + sin E%E sin 7mp
sin-mp (l—%) = - sin 1%% cos Tp + CoOS 1%£ sin 7p

In each case it‘is found that U, W, V, ﬁénishrfor z $ ct.
For z < c¢t, in the general case a simplifying contour dis-
tortion is not evident and we must work with the summations
over p in their generic form.

To illustrate the causal property of the solution (8)

we consider B We wish to show that

¢
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or equivalently (deleting the j index)

cosh 0t cosh K(l—%) ;; cos wpt cos E%E
0 = 2
K sinh K | p=—e (ﬂp)z LK
P2

cot wp

1]
=]

1 cOs mpt cos T,
= 371 J9P 5 3
[(ﬂp) + K ]

C

where the contour C is depicted in Fig. 4a. From the cos

law the latter integral is decomposed into,

1 j{'cos mpf cot wp (l—%) dp
A= 2ri 2 2
] c (rp}~ + K
- i TPZ
1 J{'cos wpt sin —
2mi E (ﬂp)z + K2

The second integrand is regular in the domain enclosed by
C so that only the first integral contributes to A. Expanding

the integrand of this first integral gives

.A _ 1 J{bos &%ﬁ + ﬂp(l—%&] + cos [mpt - ﬂp(l—%)] a

P
41 2 [(ﬁp)z + K2} sin mp
- 1 N
T 471 .j{A dp
C
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In the limit that Imp = p' » #», w_ - Cﬁp7Lnahd¥

P

[(“P)z * Kz ]';\;2 e~ le {eXIP [' E%'" (:Z -ct) +:'1rp'] |

+ exéf'ﬁp (z -vct) - ﬁpi + exp [EE—-(Z'+ ct) - ﬂpj

L L

+ exp |- E%L {z ¥+ ct) + wp'}},

k.

For p' + t= the RHS of this latter expression goeé to zeié
providing ét < z and 2L > z + ct. Both inequalities are
satisfied for ¢t < z < L. It follows that for these values
of z and t the curve C may be distorted into_C, and C2 as
depicted in Fig. 4b. This picks up the two residues at

K = timp to yield,

z .

A= 1 cos wpt cos 'rrp(l—fl-) 1 /‘+ f
2mi T o2mi i
| €1 S

o [(Wp)z + KZ] sinh 7p

cosh Ot cosh K(l—%)
K sinh K

It follows that W = 0 for z > ct. Similar constructions

hold for U and V.
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3d. The Semi-Infinite and Completely Infinite Pipe..

The solution to the above problem as given by Eqg. (8}
reduces to a very simplé form in the interval t < L/c. In
this interval the pulse is not influenced by the forwérd
wali at z = I, and must reduce to that due to a moving charged
varticle in a semi-infinite tube with walls at z = 0 and
Z w o, |

In this limit (L = =}, the inhomogeneous contributions

in U,'V and W becomne

8] ' sinh Ot
v 1> ¢ %% | sinh at
W cosh Rt

In the homogeneous p-summations, the discrete variable p

becomes the continuous variable n through the transformation,

T

-y g

3

X

There results,

dn sin wt cos nz -
win® + v2x%)

E9)

2/
< C
¥ .
g g =g

ndn sin wt sin nz
w(n® + vx?)

dn cos wt cos nz
- n2 + szz
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Rewriting the trigonometric products in exponential
. form, and closing the integration along the real p-axis
with the upper or lower semi-circle, depending on which of

these the integrand vanishes, gives the following

U
= \Y z > ct
W

% <
!
1

Only the inhomogeneous solution survives in the limit L » =,

KWJ and we obtain for vt < z < ct. (ahead of the particie)
J (k.r} _
. =24y o] e Y%3%  sinh 0.t
Z 2 2 j
r N3
o 1
J, (k.r) vl I
g = 29 ? J e VK32 sinh Q.t (9a)
r 2 2 o
r J :
o i
‘ J, (k.r)  _
B¢ 4q¥§ ! % e ijz cosh Q.t
r J ' J
o i

For z > ct the fields vanish. Behind the particle (0 < z < vt}

we find,
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Applications

4a. The Wake Fields.

At vt = I, the particle leaves the cylindrical box. To
obtain the fields in the box for vt > L, we do the following.
The fields "“behind" the partiéle (for vt < L} are givén by

Egs. (8b). Symbolically we write these fields as,

Where, as before; 1 denotes inhomogeneous and h denoctes
homogeneous. Let us construct a field G, which satisfies
the following initial walue problem:

0 G =0 for vt > L

and

G(r,vt,z) = G (r,vt,z) at vt=L ¢
Tt then follows that
c? [é + Gh] = 0 for vtk > L

{since Gh is a solution te the homogeneous equation for all

time) and .



)
coefficients €03 which enter follow from the above Fourier
decomposition.
b
> 4 - K
- EEJk = T2 q;B( ) 23 2
o]
Ji r, [('rrp) + KJ ]
Combining these fields with (2—h (the second terms in eeich of
Eq. {(8a)) gives the closed fields in the wake domain,
Pz '
K.Q. cos == J (k.r
E =2 v oy 21 L o ®5¥)
Z 2‘2@ tw [("ﬁp)2+K2] J2
o 3 p PI 3 1
. ; b . L
P - sin A+ (- sin w_. t—-:l
® | [ “pj ()7 sin w4 (e=3) ]
Q. si Tpz J k.i:
E=4quzﬂp3 in —% _1(3)
r r 2 : ij [(‘n’p)z + K 2] I 2
o j p i 1
. P . L |
- gin w_.t + (- s A(E-= 11
[ 4 (~) in wPJ( V):I (1)
NP2
. aq . Kj cos ~—f— J,_(kjr)
$ = T3 2 ) 3 5
A" . [(wp) + K. ] 3
' o 3 p 3 :

- cos w .t + (-)P cos w .(t-;'-)]
PJ B3 v

dgye < 19T o
3 S R
r . J
o ] i

Ht
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K 2

2 . -
U < 16L qye J ,
B =% ST

The p-summation may be evaluated as follows.. Define |

400 :
A 1 1 cot Tp
M= 2. -2
pe [(ﬁp)Z + KZ]Z 2mi BHP)Z + K2]2
. : c _
where the contour C is depicted in Fig. 4. Since
‘pLim  jeot wp| =1
p—)-..t?oo

the contour C may be distorted into Cqy and c, to yield,

M = gw 5 [l + s;nh ﬁ cosh K]
(2K}~ sinh™ K :
It follows that,
o 2 sinh K. cosh K.
U < yoL %1§ S 1 1+ — o 3
_ o 3 Jy sinh Kj ' 5

Tn the limit as j + = the second term in the summand goes to

a constant and gives a divergent sum. This singularity
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(evident from Eg. {12)) stems from idealization_that the
point particle q 1eaves (as well as enters) through é point
hole. When the particle reaches the far wall it coaleses
with'its (nearest) image and stops. The resultlng 51ngular
pulse is trapped in the box - This conclusion is con51stent
with Ott‘58 calculation for the tran51tlon radiation problem9
in which a particle is incident on a grounded plane. After
the particle passes through the plane a hemispherical Qave
propagates away froﬁ the wall carrying zero-field behind it
and the previous field in front of it. The fields at the wave
surface are singular. In the similar problems with a hole

10,11

in the plane this singularity is obviated. Similarly,

in the problem considered herein, if the series above, written

y
]

3

in the form,

is cut-off at rokj_: E%EQ then fhe sum is finite. Th%s would
be, -“oughly; the energy deposited in a finite cylindr%cal box
with holes of diameter d  in its end plates. .

The large order zeros of J go as v k:j = m} SO t%at there

are

j o~ 2ro/d
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terms in the cut-off series of Eq. (12). It follows that an

upper estimate of this series is given by

U < 3 4TTYq282 - 81qu282
J U. = : = 4 -
. Imax LN

Our assumption that the particle does not loose too mﬁch of
its energy to the stimulated wake fields will be valid if

__EL______ €< 1

(y-1)m_c*
o

For an electron with 8 = 1 one obtains

r, >> 4 >> 107 3em

which is easily satisfied in most practical cases. The left
ineguality insures that the hole is, at most, a small per-

turbation in the included analysis.

4c. The Charged'Line Segment

In this section we consider a line charge of length b < L
and charge g. There are four relevant epochs. - {See 'Fig. 5)
in epoch (1), the segment is partially in the cavity: (vt < b).

In epoch {2), the segment is completely in the cavit§, (b < vt < L).
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In epoch (3), the segment is l1eaving the cavity, (L - b <vt - b < L).

Tn the fourth epoch, the pulse has completely left the cavity.,

In the first two epochs we only need the Green's‘fields
given by Eg. (8). We recall that these fields (with g = 1) are
those at'(ﬁxt) due-to a point charge which entered the cavity

at £ = 0. In epoch {1}y, one obtains

t

- av '

Fuv (Eft) =5 ,/‘ Guv (EJT)dT t < b/v
0

More explicitly, the B field is given by:
t
(L) _ i >
B = EE: 5 Wj at vt <z (15a)
o

ahead of the leading edge of the pulse, and

o .

J, (k.r) z
gl = E: S ~/~ W. dat +_/i w.odt} =z < vt (15b)
2 ] : 3
3 Jg (o) Tz : :

behind the leading edge of the pulse. The factors W are given

in Eg. (8), while B and T, are defined through,

B E—i—u—‘;”gn

d
bro

c z/
Tz z/v



The wake factor W (n,t) is defined by Eq. (11). It gives the
wake field at "t" due to a particle which penetrated the far
wall of the cavity at n = L/v.

" In the domain behind the after edge of the pulse

T t ~ (17b)
(3) L N Y. |
B = 3 S f W, d‘r-}f . (n,t)an z <vt-b
- - ) Jﬂ. J J R
. 1 t-T T

In the fourth epoch, vt - b > L, the solution is a super-

position of homogencous wake fields.

W g, (k,r) & b
B = 3 -—J——J 5 f W, (n,t)dn (18)!
] 1 Ty, |

In addition to the trigonometric behavior, the time
dependence of these fields includes the hyperbolic com~
ponents,

cosh Q1 _ {sinh Qrt

(sinh Qr)QdT h (cosh Qr)
For the third epoch, we recall that the time dependence of
W is given by the factor

Aez = - cos wt + (“)p cos w(t-n)

W
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The integrals over A which enter the above expressions for

B are,

=|

t
f A dn = (T, - t) cos wt + (-)Pu™! sin Zn(t-'TL)

1y,

which reveals a seculér behavior. In the fourth epoéh the
modes are all‘harmonic. In general, all the time inéeq:ations
in Egs. (11-15) are simply performed.

In the extremely relativistic limit much of the segment
ma§ enter the cavity before the fields arxre influenced by the
far wall. {(See Pig. 7 )} The fields_are then most simply
obtained by integrating the aéymptotic forms, Eq. (9). Writing
only the B fields, we have for vt < z < ct {and vt < b), in

{

front of the leading edge of the pulse,

: (k r) sinh 2.t
B¢ - 4qu§ 1 ijz . 3
bz, j Ji ]

-énd behind the leading edge of the pulse,

Ji k r)

B, = 4qw8 z

[l - e_th cosh ijz]
c 'l %5

For any of these pulse problems if the total charge of the

/ : segment is g and IA is beam current in amps, then
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4d. Return Current-Point and Line Charge Segment.

The surface current at the wall of the perfectly conductlng

cylinder is given by,

5, = %¥ B¢(ro) (stat amps/cm)

From Eq. (8) one obtains, for the propagating point charge,

(z t:v,h)
5, = %*BZ
, 3 J(kr)

where, as before 2 denotes z 2 yt.

After the particle leaves the box, the surface éurrenﬁ
is gbtalned from the wake solution, Eg. (ll). For the line
pulse of charge, there are four distinct epochs (o = l, Y Y

The surface current during these intervals is given by.

o (0 - gxelel ()

2 Thr
o

with B(q) given in Egs. {15-18). The time behavior of S?
follows B sc that we expect hyperbolic dependence in the
first two epochs with secular dependence entering in the

third epoch, during which time the segment is ieaving the cavity.
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Conclusions |

In this aﬁa}ysjs we have studied the fields induced in
a finite, closed, cylindrical cavity, with perfectly conducting

walls, by a relativistically moving charged point pa}ticle.

‘Réferring to Fig. 6, we see that the fields conveniehtly divide

in%o four distinct ‘domains. In the region bounded b?,the
triangle OAB the fields are those of & point charge ﬁoving‘in
a semi infinite tube. All events in this domain are not
influenced by the forward wall {(whose world~line is 2z = L).

In the démain bounded by the triangle OAD all fields vanish
since all events in this domain are not influenced by the
particle. BAbove the line ct = -z + 2L, but outside the .
triangle OAB, the full soluticn, Eg. (8) comes iﬁto play. The
wake fields, Eq. (l1l1) come into play above the line t = Ty,
again, excluding the points in.OAB.

In calculating the energy in the wake fields aiéingularity
enters owing to the idealization in our model that the pOiﬁt
ch?rge enters and leaves the cavity through point h&ies. This
in' turn necessitates that the point charge coalesce:ﬁith its
image and stop in zero time. The infinite deceleraéion launches
a singular pulse back_into the cévity. Any finite hole ob-
viates this singularity. For én electron, it was found that

a hole of diameter exceeding one fermi insures that the initial

ehergy of the particle is large compared to the energy excited

- in the wake fields.
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The point charge solution was used to obtain the ﬁields
of a line segment of.chérge. Here it was found that the time
domaln relevant to the problem divides into folur epoéhs as
deplcted in Fig. 5. The space-time diagram for thls problem
_ is ‘shown in Fig. 7. In the triangle OAB the: flelds are those
of.a finite segment propagating down a;seml-lnflnlte;cyllnder.
Abova the line ct = -z + 2L:the total solution as gi&en by |
Eqs. (15-18) comes into play.

The formalism introdqcéd herein for obtaininé the rela-
‘tivistic Green's solution may be easily extended to a variety
of problems, provided one is able to fdrmulate-the static
solution in terms of images. Such problems include motion
in a cylinder of arbitrary cross sectlon' the motion of any
charge configuration which lies in a plane of constant Z;
motion in a dielectric medium. The limitation of the theory
ieg that it does not account for interaction between charges

in a given configuration.
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List of Figure Captions

i. Image locations. for a particle in a c¢ylindrical box.
2. Positive and negative image frames.
3. The extended lab frame.

4. The contours C, C, and Cz.
5. Relevant time intervals for the line charge problem.
6. Space-time diagram for the point charge.

7« Space-time diagram for the line-charge.
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